



## **LECTURE SCHEDULE**

**Training Course** 

# **ORGANOMETALLIC CATALYSIS**

Professor Jean Pierre Genet (ParisTech-Ecole Nationale Supérieure de Chimie)

On November 27<sup>th</sup>, 28<sup>th</sup>, 29<sup>th</sup>, 30<sup>th</sup>, 2017

ESPCI 10 Rue Vauquelin 75005 Paris France

## Day 1

| 9h00-10h30                           | <ul> <li>Lecture 1: Basic chemistry of transition metals complexes <ul> <li>Introduction</li> <li>Historical reactions on homogeneous catalysis: few main reactions</li> <li>Formation of transition metal complexes</li> <li>Electronic configurations. The 16 and 18 electrons rule</li> <li>Definition and interest of organometallic catalyst: MtLn</li> <li>General presentation of organic ligands and nomenclature</li> <li>Electrons counting and degree of oxidation</li> <li>Examples and applications</li> <li>Exercises on organometallic chemistry: Problems set</li> </ul> </li> </ul> |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10h30-10h45                          | Coffee break                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10h45-12h15                          | <ul> <li>Lecture 2: Elementary steps in organometallic chemistry</li> <li>Introduction</li> <li>Non-reductive elimination</li> <li>Oxidative addition</li> <li>Insertion reaction</li> <li>Reductive elimination</li> <li>Transmetallation</li> <li>Ligands substitution</li> <li>Coordination</li> <li>Insertion</li> <li>Nucleophilic addition on ligand coordinated to transition metal</li> <li>β and α elimination of hydrogen atoms (dehydrometallation)</li> <li>Applications: mechanisms of Stille, Suzuki, Heck, Sonogashira coupling reactions.</li> </ul>                                 |
| 12h15-14h00                          | Lunch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14h00-15h30<br>Main types of ligands | Lecture 3: Notions de ligands<br>- Alkyls, allyls<br>. Phosphines, water-soluble phosphines<br>. Phosphites<br>- Phosphoramidites<br>- Phospholes<br>- Amines<br>- Bisoxazolines and imidazolines<br>- P-N ligands: phosphinooxazoline<br>- Carbenes<br>- Carbon monoxide                                                                                                                                                                                                                                                                                                                            |
| 15h30-15h45                          | Coffee break                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15h45-17h15                          | Lecture 4: Reactivity of metal complexes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|                                                                                                                                                                    | <ul> <li>Metal ligand interactions (σ et π effects)</li> <li>Factors influencing the reactivity and the selectivity</li> <li>Role of ligands</li> <li>Steric parameters (Tolman cone angle)</li> <li>Electronic effects</li> <li>Example: optimization of L-DOPA synthesis</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day 2                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9h00-10h30                                                                                                                                                         | Lecture 5: Double bond hydrogenation reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                    | -Introduction<br>-Preparation of complexes (Rh,Ir)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Hydrogenations of non-s                                                                                                                                            | substituted olefins (Rh,Ir)<br>-Osborn-Wilkinson catalyst<br>-Mechanism<br>-Crabtree catalyst: synthesis and applications<br>Selectivity (hydrogeneticate assisted by functional groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Asymmetric hydrogenat                                                                                                                                              | <ul> <li>Selectivity/ hydrogenations assisted by functional groups</li> <li>ion of prochiral olefins <ul> <li>Chiral ligand</li> <li>Dehydroaminoacids synthesis</li> <li>Application to the synthesis of L-DOPA</li> <li>Origin of enantioselectivity</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Asymmetric hydrogenat<br>(API): thrombin inhibito<br>endopeptidase C inhibito<br>succinate moiety of meta<br>anticonvulsant, building<br>vitronectin receptor anta | <ul> <li>ion of alkenes (Ru)</li> <li>Preparations of ruthenium chiral complexes</li> <li>Allylic alcohols</li> <li>Applications in perfumery (lilial, florydral)</li> <li>α,β-Unsaturated acids and dehydroaminoacids</li> <li>Mechanism</li> <li>Application to the antiflamatory drug: Naproxen</li> <li>Enantioselectivitity orientation : comparison between Ru (II) and Rh (I) catalysts</li> <li>Asymmetric hydrogenation of non-functionalized olefins, lactones and unsaturated ketones</li> <li>Application in perfumery: an industrial example the Paradisone</li> <li>Applications to the synthesis of active pharmaceutical ingredients r CRC 220, synthesis of a renin inhibitor , anti-HIV drug indinavir, or candoxatril, endothelin antagonists such as SB 209670, chiral allo- protease inhibitor UK-370,106, pregabalin a marketed blocks for a new prototype of HCV protease inhibitor BILN 2061, gonist SB-273005</li> <li>Examples of catalysts recovery</li> </ul> |
| 10h30-10h45                                                                                                                                                        | Coffee break                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10h45-12h15                                                                                                                                                        | Lecture 6: Hydrogenation of carbonyls and imines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

- Preparation of catalysts

|                                  | - Hydrogenation of ketoesters                                                                      |
|----------------------------------|----------------------------------------------------------------------------------------------------|
|                                  | - Mechanism                                                                                        |
|                                  | - Enantioselectivity-offentation<br>- Selectivity: influence of the dihedral angle of the metal-   |
|                                  | diphosphine catalyst                                                                               |
|                                  | - Applications in organic synthesis and comparison with                                            |
|                                  | biochemical reduction                                                                              |
|                                  | - Hydrogenation of fluorinated $\beta$ -diketones (optimization of                                 |
|                                  | enantioselectivity with electron deficient diphosphine)                                            |
|                                  | - Application to the synthesis of rivastatin                                                       |
|                                  | - Dynamic kinetic resolution (DKR                                                                  |
|                                  | - Application: synthesis of a key chiral intermediate of the                                       |
|                                  | - Synthetic applications                                                                           |
| Reductions by hydrogen           | transfer (Rh Ru Fe)                                                                                |
| iteauetions of nyarogen          | - History                                                                                          |
|                                  | - The different developments                                                                       |
|                                  | - Noyori reaction: mechanism and applications                                                      |
|                                  | - Applications for the synthesis of pharmaceutical intermediates:                                  |
|                                  | NMDA 2B Receptor Antagonist Ro 67-8867, synthesis of                                               |
|                                  | neurokinin receptor antagonist, vasopressin receptor antagonist                                    |
|                                  | OPC-4106, enantioselective approach to PDE-IV inhibitor                                            |
| Asymmetric hydrogenati           | on of imines                                                                                       |
| r is j innetite it j ut o genuti | - Catalysts                                                                                        |
|                                  | - Use in organic synthesis: chiral synthesis of the antibiotic $(S)$ -                             |
|                                  | levofloxacin, synthesis of the neuromuscular blocker GW                                            |
| 0430,                            | AMPA receptor modulator S-1898                                                                     |
|                                  | - Industrial synthesis of Metolaclor                                                               |
|                                  | - Conclusions                                                                                      |
| 12h15-14h00                      | Lunch                                                                                              |
|                                  |                                                                                                    |
| 14h00-15h30                      | Lecture 7: Isomerizations                                                                          |
| Isomerizations of double         | bonds                                                                                              |
|                                  | - Mechanism: 1,2 and 1,3 hydrogen shifts                                                           |
|                                  | - Isomerization of allylic and propargylic alcohols                                                |
|                                  | - Isomerization of ethers                                                                          |
|                                  | - Applications in perfumery                                                                        |
|                                  | - Kinetic resolution                                                                               |
|                                  | - Isomerization of allylic acetates<br>Machanisms: comparison between Pd (II) and Pd (0) cotalysts |
|                                  | - Chirality transfer                                                                               |
| Enones isomerization             |                                                                                                    |
|                                  | Catalysts                                                                                          |
|                                  | Mechanisms                                                                                         |
|                                  | Examples                                                                                           |
| 15h30-15h45                      | Coffee break                                                                                       |

### 15h45-17h15 Lecture 8: Asymmetric isomerization

Isomerization of allyl amines.

9h00-10h30 Lecture 9 : Oxidations I

| -                | - Catalysts (Mo, Rh, Ir)                                        |
|------------------|-----------------------------------------------------------------|
|                  | - Chemoselectivity : Comparison between isomerization catalyzed |
|                  | by bases/acids and isomerization catalyzed by transition metals |
|                  | - Enantioselectivity                                            |
|                  | - Mechanism                                                     |
|                  | - Developments in organic synthesis                             |
|                  | - Industrial applications: synthesis of menthol, ambrox         |
|                  | - Enantioselective isomerization of allylic alcohols            |
|                  | - Applications in perfumery                                     |
|                  | - Synthesis of florydral                                        |
| Other substrates |                                                                 |
|                  | - Isomerization of allylic and propargylic alcohols             |
|                  | - Applications for prenal, geraniol and citral synthesis        |
|                  | - Epoxides isomerization (Pd)                                   |
|                  | - Secondary alcohols racemization (Ru)                          |
|                  | - Dynamic kinetic resolution (DKR): Chemoenzymatic reactions    |
|                  |                                                                 |

### Day 3

| Wacker oxidation (Pd) |                                                  |
|-----------------------|--------------------------------------------------|
|                       | - Mechanism                                      |
|                       | - Industrial applications                        |
| Olefins epoxidation   |                                                  |
|                       | - Different classes of oxidizing agents          |
|                       | - Oxidations catalyzed by transition metals      |
|                       | - Chemoselectivity                               |
|                       | - Asymmetric epoxidation of allylic alcohols     |
|                       | - Sharpless epoxidation                          |
|                       | - Origin of enantioselectivity                   |
|                       | - Kinetic resolution                             |
|                       | - Synthetic applications                         |
| Other methods         |                                                  |
|                       | Chiral disaring as                               |
|                       | - Chiral dioxiranes<br>Katsuki Jacobsen reaction |
|                       | - Origin of enantioselectivity                   |
|                       | - Mechanism                                      |
|                       | - Synthetic application: taxotere side chain     |
|                       |                                                  |
| 10h30-10h45           | Coffee break                                     |
| 10h45-12h15           | Lecture 10: Oxidations reactions II              |

### Dihydroxylation of olefins (AD)

- History
- Chiral ligands
- Mechanism
- Synthetic applications

#### Oxidation of sulfur compounds

- Catalytic systems
- Chiral sulfoxides

- Applications to large scales production of sulfoxides of industrial interest : Esomeprazole used in the treatment of gastroesophageal reflux disease, , ACAT inhibitor

12h15-14h00 Lunch

#### 14h00-15h30 Lecture 11: Carbonylations

### Hydroformylation of olefins

|                    | - Introduction                                                                                                                                                                                         |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | - Catalysts and mechanisms                                                                                                                                                                             |
|                    | - Regioselectivity                                                                                                                                                                                     |
|                    | - Catalysts and stereo-oriented hydroformylation                                                                                                                                                       |
|                    | <ul> <li>Hydroformylation of propene use of water-soluble catalysts (Rh-TPPTS)</li> <li>Hydroformylation of alkynes</li> <li>Asymmetric hydroformylation</li> <li>Applications in perfumery</li> </ul> |
|                    | <ul> <li>Carbonylation of compounds with benzyl and allyl chlorides</li> <li>Double carbonylation of benzyl chlorides</li> <li>Carbonylation of methanol</li> </ul>                                    |
|                    | - Acetic acid symmesis                                                                                                                                                                                 |
| 15h30-15h45        | Pause café                                                                                                                                                                                             |
| 15h45-17h15        | Lecture 12: Metathesis                                                                                                                                                                                 |
| Carbenes           |                                                                                                                                                                                                        |
| Curbenes           | Introduction                                                                                                                                                                                           |
|                    | Structure of carbenes                                                                                                                                                                                  |
|                    | Generation of carbenes : Fisher and Schrock types                                                                                                                                                      |
|                    | Synthesis and functionalization of carbenes                                                                                                                                                            |
|                    | Reactivity of carbenes                                                                                                                                                                                 |
|                    | Tebbe reagent                                                                                                                                                                                          |
|                    | Olefination of esters and amides                                                                                                                                                                       |
|                    | Catalytic reactions and applications in organic synthesis                                                                                                                                              |
| Olefins metathesis |                                                                                                                                                                                                        |
|                    | - Different types: RCM, ADMET, ROMP                                                                                                                                                                    |
|                    | - Mechanism: Y. Chauvin                                                                                                                                                                                |
|                    | - Industrial processeses                                                                                                                                                                               |

|                                               | <ul> <li>Catalysts Mo, Ru</li> <li>Ring formation (RCM), Mechanism</li> <li>Industrial synthetic applications (medium ring, macrolactonisations) Stagonolide A,Decalactone</li> <li>Application to the synthesis of HCV protease inhibitor BILN 2061,</li> <li>Asymmetric synthesis</li> <li>Enynes metathesis</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cross Metathesis (CM)                         | <ul> <li>Alkenes, Synthesis of Aplysamine</li> <li>Alkynes metathesis: molybdenum and tungsten catalysts</li> <li>Formation of ring from alkynes (RCAM)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Conclusions                                   | - Pormation of Fing Hom arkynes (RCAW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Day 4                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9h00-10h30                                    | Lecture 13: Creation of bonds C-C (I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cyclopropanations<br>Palladium/ Nickel cataly | <ul> <li>Carbenoïdes</li> <li>Mechanism</li> <li>C-H and N-H insertion: inter and intramolecular reactions</li> <li>Applications</li> <li>zed reactions ; C-C and C-N bonds formation</li> <li>Sonogashira reaction (synthesis of galbanolene)</li> <li>Negishi coupling and Heck reactions</li> <li>Application to the syntheses of prosulfuron (herbicide) and pharmaceutical compounds : carbacyclin,discodermolide, xerulinic acid , singulair</li> <li>Suzuki coupling (Pd, Ni) and applications to the synthesis of pharmaceutical drugs: prostaglandins, palytoxin, myxalamide, Valsartan (Novartis), Valsartan (Novartis), ABT-963(Abbot), RO0094889 (Roche)</li> <li>Buchwald-Hartwig reaction</li> <li>Allylic substitution (Tsuji-Trost reaction)</li> <li>Application to the synthesis of the neuromuscular blocker GW 0430, AMPA receptor modulator S-18986, synthesis of MGS0028, an mGluR 2 receptor agonist</li> <li>α arylation of enolates</li> <li>Intramolecular arylation</li> </ul> |
| 10h30-10h45                                   | Coffee break                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10h45-12h15                                   | Lecture 14: Formation of C-C bonds (II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Dienes / Applications in                      | fine chemistry<br>- Telomerizations /applications synthesis of jasmonate<br>- Additions<br>- Cycloadditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|                        | - Few examples of applications in organic synthesis                                                                                                  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cycloisomerizations    | <ul><li>Enynes, Diynes</li><li>Mechanism</li><li>Applications</li></ul>                                                                              |
| 12h15-14h00            | Lunch                                                                                                                                                |
| 14h00-15h30            | Lecture 15: C-H Activation: towards a green catalysis                                                                                                |
|                        | - Introduction                                                                                                                                       |
|                        | - Olefination of $C(sp^2)$ H Bonds                                                                                                                   |
|                        | <ul> <li>Arylation of C(sp<sup>2</sup>) H and C(sp<sup>3</sup>) H bonds-</li> <li>Ortho Alkylation Sequential olefination of aryl iodides</li> </ul> |
|                        | - Arylation and Alkylation of $C(sp^2)$ H and $C(sp^3)$ H bonds<br>- Conclusions and perspectives                                                    |
| 15h30-15h15            | Coffee break                                                                                                                                         |
| 15h15-16h45            | Lecture 16: Other types of reactions                                                                                                                 |
| Asymmetric Michael re  | actions                                                                                                                                              |
|                        | - Additions of organoboron compounds                                                                                                                 |
|                        | <ul> <li>Boronic acids and organopotassium trifluoroborates to Michael<br/>acceptors</li> </ul>                                                      |
|                        | - Stereochemical outcome of the asymmetric 1,4-addition                                                                                              |
|                        | Reactions                                                                                                                                            |
|                        | - Application to the synthesis of tolterodine                                                                                                        |
|                        | - Synthesis of chiral $\alpha$ and $\beta$ -amino acids (Mechanism and                                                                               |
|                        | DFT calculations)                                                                                                                                    |
|                        | - Epoxides opening                                                                                                                                   |
| - Dienes isomerization | ns : Claisen, Cope reactions                                                                                                                         |
| <b>D</b>               |                                                                                                                                                      |
| - Protecting groups in | fine chemistry                                                                                                                                       |

-