Latein	drier :	2026																							
Janvier	Février	Mars Avril						Mai	Juin	Juin Jui		Juillet	llet Août		Se	ptembre		Octobre		Novembre			Décembre		
J	1 D	1 D	1 D	1 D	1 M	1 M lethodolo	ogy Indu 1 M tilisation Enz	1 V 1 mg	L	1 L	1 L	1 M DOE	1 M	1 S	1 M	1 M	1 M	1 M	1 J DSC	1 J	1 D	1 D	1 D	1 M Chimi	
	2 L	2 L		2 L	2 J	2 J	2 J	2 S 2	M GC-MS	2 M	2 M	2 J	2 J Formulati	on 2 D	2 M	2 M	2 M	2 M	2 V	2 V Metrologie	2 L	2 L	2 L	2 M organiq	que 2 M GC/GC
	3 M	3 M		3 M	3 V	3 V	3 V	3 D 3	M	3 M	3 M	3 V	3 V Cosmétiqu	es 3 L	3 J	3 J	3 J	3 J		3 S	3 M	3 M CLHP-M	Elizyillat	c 3 J	3 J
4 D .	4 M	4 M	4 M	4 M	4 S	4 S	4 S	4 L 4	J	4 J	4 J 5 V	4 S	4 S	4 M	4 V	4 V	4 V	4 V	4 D	4 D	4 M admin et formes	4 M	4 M catalysis	4 V	4 V
	5 J	5 J	5 J	5 J	5 D	5 D	5 D	5 M 5	V	5 V	5 V	5 D	5 D	5 M	5 S	5 S	5 S		5 L	5 L	5 J Pharmaceutiqu	5 J	5 J	5 S	5 S
	6 V	6 V		6 V	6 L	6 L	6 L	6 M 6	S	6 S	6 S	6 L	6 L	6 J	6 D	6 D	6 D	6 D	6 M	6 M Biosurfactant	6 V	6 V	6 V	6 D	6 D
	7 S	7 S		7 S	7 M	7 M	7 M	7 J 7	D	7 D	7 D	7 M	7 M	7 V	7 L	7 L	7 L	7 L	7 M	7 M	7 S	7 S	7 S	7 L	7 L
	8 D	8 D	8 D	8 D	8 M	8 M	8 M	8 V 8 9 S 9	L	8 L	8 L	8 M	8 M	8 S	8 M	8 M Catalyse		8 M	8 J Etudes	8 J Industrialisation	8 D	8 D	8 D	8 M	8 M
9 7 9	9 L	9 L	9 L	9 L	9 J	9 J	9 1	9 S 9	M	9 M	9 M 40 H Plans	9 J	7 M 8 M 9 J 10 V 11 S 12 D 13 L 14 M 15 M 16 J 17 V 18 S	8 S 9 D 10 L 11 M	9 M	9 M enzymatiq	ue 9 M	9 M	9 V statistiques	9 v n procedes	9 L	9 L	9 L	9 M	9 M
3 S 1	10 M	10 M	10 M	10 M	10 V	10 V	10 V	10 D 10	M Chimie physicochimi	10 M	10 M d'expérience	10 V	10 V	10 L	10 J	10 J	10 J	10 J	10 S 1	0 S	10 M	10 M	10 M	10 J	10 J
	11 M	11 M	11 M	11 M	11 S	11 S 12 D 13 L	11 S	11 L 1	1 J tensioactifs		11 J	11 S	11 S	11 M	11 V	11 V	11 V	11 V		1 D	11 M	11 M	11 M	11 V	11 V
2 L 1	12 J	12 J	12 J	12 J	12 D	12 D	12 D	12 M 12	2 V	12 V moléculaire	12 V	12 D	12 D	12 M	12 S	12 S	12 S	12 S		2 L	12 J	12 J	12 J	12 S	12 S
	13 V	13 V	13 V	13 V	13 L		13 L	13 M 1:	3 S	13 S	13 S	13 L	13 L	13 J	13 D	13 D	13 D	13 D		3 M	13 V	13 V	13 V	13 D	13 D
	14 S	14 S		14 S	14 M	14 M	14 M	14 J 14	D	14 D	14 D	14 M	14 M	14 V	14 L	14 L	14 L	14 L	14 M 1	4 M	14 S	14 S	14 S	14 L	14 L
	15 D	15 D	15 D	15 D	15 M	15 M	15 M	15 V 1	5 L	15 L	15 L	15 M	15 M	15 S	15 M	15 M Electropho		15 M Chef de projet	15 J Electrosynt 1	5 J	15 D	15 D	15 D	15 M	15 M
	16 L	16 L	16 L	16 L	16 J	16 J	16 J	16 S 16	M Distillation	16 M Génie des	16 M Antioxydant	16 J	16 J	16 D	16 M	16 M e capillair	e 16 M forme solid	9 16 M	16 V hesis 1	6 V	16 L	16 L	16 L	16 M	16 M
	17 M	17 M	17 M	17 M	17 V	17 V	17 V	17 D 11	7 M	17 M procédés	17 M	17 V	17 V	15 S 16 D 17 L 18 M	17 J	17 J	17 J Micro algue	s Solvant	17 S 1	7 S	17 M	17 M Milieux dis		17 J	17 J
8 D 1	18 M	18 M	18 M	18 M	18 S	18 S	18 S	18 L 18	3 J	18 J Competitivite economique et	18 J	18 S	18 S	18 M	18 V	18 V	18 V	18 V			18 M	18 M	18 M	18 V	18 V
	19 J	19 J	19 J	19 J	19 D	19 D	19 D	19 M 19	V V	19 V environnemmtale	19 V	19 D	19 D		19 S	19 S	19 5	19 S		9 L	19 J	19 J	19 J	19 S	19 S
0 M 2	20 V	20 V	20 V	20 V	20 L	20 L	20 L	20 M 20	S		20 S	20 L	20 L	20 J	20 D	20 D	20 D	20 D			20 V	20 V	20 V	20 D	20 D
1 M 2	21 S	21 S		21 S	21 M	21 M	21 M	21 J Noyaux 2	I D	21 D	21 D	21 M	21 M	21 V	21 L	21 L	21 L	21 L Solid state		organismes	21 S	21 S	21 S	21 L	21 L 22 M 23 M
2 J 2	22 D	22 D		22 D	22 M	22 M	22 M	22 V aromatiques 23	2 L	22 L	22 L	22 M	22 M	22 S	22 M Heterocyc	les 22 M Environnen	22 M	22 M	22 J 2	.2 J	22 D	22 D	22 D	22 M	22 M
3 V 2	23 L	23 L	23 L	23 L	23 J	21 M 22 M 23 J	23 J	23 S 2:	M M	23 M RMN 24 M	23 M	23 J	20 L 21 M 22 M 23 J 24 V 25 S	22 S 23 D	23 M	23 M economi		23 M	23 V 2	3 V	23 L	23 L	23 L	23 M	
	24 M	24 M	24 M	24 M	24 V	24 V 25 S	24 V	24 D 24	1 M		24 M	24 V	24 V	24 L	24 J	24 J	24 J 25 V	24 J	24 S 2	4 S	24 M	24 M QBD	24 M Analyse d	es 24 J	24 J 25 V
5 D 2	25 M	25 M	25 M	25 M	25 S	25 S	25 S	25 L 25	J	25 J	25 J	25 S	25 S	24 L 25 M 26 M 27 J	25 V	25 V		25 V	25 D 2	.5 D	25 M	25 M	25 M Pmr	25 V	
δ L 2	26 J	26 J	26 J	26 J	26 D	26 D	26 D	26 M 26	5 V	26 V	26 V	26 D	26 D	26 M	26 S	26 S	26 S	26 S	26 L 2	16 L	26 J	26 J	26 J Hydrogen	isa 26 S	26 S
7 M 2	27 V	27 V	27 V	27 V	27 L	27 L 28 M	27 L	27 M Synthèse 2:	7 S	27 S	27 S	27 L	27 L	27 J 28 V	27 D	27 D 28 L	27 D	27 D	27 M 2	33 V 44 S 55 D 66 L 77 M 88 M	27 V	27 V	27 V tion	27 D	27 D
8 M 2	28 S	28 S	28 S	28 S	28 M		28 M	28 J peptidique 21	3 D	28 D	28 D 29 L	28 M	28 M		28 L		28 L 29 M	28 L	28 M 2	8 M	28 S	28 S	28 S	28 L	28 L
3 J		29 D	29 D	29 D	29 M	29 M 30 J	29 M 30 J	29 V 29	L	29 L 30 M		29 M	29 M 30 J	29 S	29 M	29 M		29 M	29 J 2	19 J	29 D 30 L	29 D	29 D	29 M	29 M
3 V		30 L Chromato	30 L	30 L	30 J	30 J	30 J	30 S 31	M		30 M DOE	30 J		30 D	30 M	30 M	30 M DSC	30 M			30 L	30 L	30 L Chimie	30 M	30 M
1 5		31 M supercritique	31 M thodology Prod	c 31 Milisation E	1zymes			31 D				31 V	31 V	31 L					31 S 3	11 S				31 J	31 J
			-												_										iCalendrier.f
ormation val	lidáo	Luca		David		NI:-		Tandana							7 11	1.1.1									
mation val	liuee	Lyon	1.1	Paris		Nic	ce	Toulouse								1.11									
\neg		Lille		Sur site		Nimes		Bordeaux							7 11	1.11									